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Abstract

Large space structural systems, due to their inherent flexibility

and low mass to area ratio, are represented by large dimensional mathe-

matical models. For implementaticn of the ccntrol laws for such systems

a finite amount of time is required to evaluate the control signals; and

this time delay may cause instability in the closed loop ccntrol system

that was previously designed without taking the input delay into ccn-

sideration. The stability analysis of a simple harmonic oscillator

representing the equaticn of a single mode as a function of delay time

is analyzed analytically and verified numerically. The effect of in-

herent damping cn the delay is also analyzed. The ccntrol problem with

delayed input is also formulated in the discrete time dcmain.

I. Introduction

large flexible space structures have been proposed for possible use

in ccmmunicaticns, electronic orbital based mail systems, and solar

energy collection. 1,2 The size and the low mass to area ratio of such

systems warrant the consideration of the flexibility as the main ccntri-

bution to the dynamics and control problem as compared to the inherently

rigid nature of earlier spacecraft systems. For such large flexible sys-

tems, both orientation and surface shape control may often be required.

The equations of motion describing the shape of any large space

structure are either represented by a few partial differential equations

or a large number of ordinary differential equations. As the partial

differential equations are difficult to solve for control system design

purposes, the structural dynamics are commonly described using Finite

Element Methods (FEM). Two typical large space structures namely the

Hoop/Colunn antenna 3 and the Space Station initial operational configura-

ticn (IOC) 4 are both described using 672 degrees of freedmm. Thus the

dynamics of a large space structure can be written as5:

M Z + K Z = Uc (I)
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where
M=NXN mass/inertia symmetric matrix

K = NXN stiffness symmetric matrix

Z=NXl generalize coordinates representing the degrees

of freedcm

Uc= influence of the external forces in each degree of

freedcrn= B'U.

With the modal transformation

Z=%q

and the properties of the modal transformaticn such as

_TM_ = I

2
TK_ = diag [_ _ .... , n ]

and neglecting the higher modes, equation (i) can be written in standard

state space form as

X=AX+ BU

where

X = 2nxl state vector representing modal coordinates

and their velocities [q,_]T

(2)

U = mxl control vector

A [ ]II
0 f nxn

2 I

-_l j 0
21

D

system matrix

S control influence matrix

II. Control with Delayed Input

The proposed control systems for large space structures are based
on state variable feedback of the form:

U = -FX (3)
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and the control gain matrix, F, is designed using techniques such as the
linear quadratic regulator (LQR) theory °, pole placement_, and/or linear
quadratic Gaussian/loop transfer recovery (LQG/LTR).8

For the case when the^complete state is not available for feedback,
an estimate of the state, X, is obtained using an appropriate estimator
from the measurementsof the form

Y = Cx (4)

where

Y = _xl measurement vector

C = _xn sensor influence matrix

^

In general, it is assumed that the estimated state, X, is instanta-

neously available. As the state estimator is implemented using a

digital computer and the number of the status (2n) is of the order of

hundreds for a large space structure, the computational time becomes

appreciable. Thus, in the present paper, the stability of the closed

loop control system, with the control as given in equation (2), is

analyzed as a function of the delay time (h) using the modified control
law of the form:

U(t) = -FX(t-h) (5)

The characteristic equation of the closed loop system

= AX(t) -BFX(t-h) (6)

is given by

G(s,h) = det (sI-A+BFe -sh) = 0 (7)

which, in turn, can be written as

2n -shi

G(s,h) = _ Pi(s)e = 0. (8)

i--0

The roots of the characteristic equation, (8), as a function of the delay,

h, are obtained from the corresponding auxiliary equation 9

2n

G'(s,h) = E P.(s)(l-Ts) 2i (l+Ts) 4n-2i = 0 (9)
l

i=0

where
-sh 1-sT 2
e = [ iT fsT] (i0)
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The value of T for which the roots of the equaticn (9) cross the

imaginary axis in the s-plane is obtained and the corresponding h is

evaluated using the relaticn, (i0).

III. Example of a Harmonic Oscillator

The equatic_ of moticn representing the ith structural mode is

the familiar harmonic oscillator and is given by

xi + 2. x. = f.1 l l

Considering the delayed velocity feedback of the form

=-2_i_ix i (t-h)fi

with

mi = 6, _i = 0.5,

the characteristic equation is given by

G(s,h) = s2+36+6se -sh = 0

1

= i_0 Pi(s)e "ski = 0

where

P (s) = s2 + 36
o

Pl(S) = 6s

The corresponding auxilary equation is given by

(ii)

(12)

(13)

1
2i 2-2i

E P_ (s) (l-Ts) (I+TS) = 0
i=0

J_

(14)

i,eo
(s2+36) (I+Ts) 2 +6s(I-Ts) 2 = 0

or T2s 4 + (2T + 6T2) s3+(l+36_-12T) s2

+ (72T+6)s+36 = 0 (15)

Using the Nouth-Hurwitz criterion, it can be found that the roots of

equation (15) cross the imaginary axis at _ =" 9.7 for T -'-0.0426.

The corresponding delay (h) can be calculated from the relation (i0)

with s = j_ and is 0.16. This result can also be verified directly

for this simple system with the substitution s=jm into equation (13) 10 ,

resulting in t_he value of m and delay h for which the roots of the

characteristic equation cross the imaginary axis.
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Thus, equation (13) can be written as (keeping _i and mi):

(_i 2_ 2 i_i_ )e- j_h) + j (2_ = 0 (16)

or

(mi2-m2+2Eimi_ sinmh) + J2Eimiw coswh = 0

For equation (17) to be satisfied

(17)

cos mh = 0 or _h = 7/2 (18)

and 2 2

w i -w +2_iwi_ = 0 (19)

wi/ zor w = _iwi _ l+_ i

Taking the positive value for w, the delay h, is given by

_/2
h = (20)

wi[gi + / l+gi2 ]

The value of h for gil =t 0.5 and m'l = 6 is 0.16 and thus the earlier
result is verified, is observed that an increase in damping reduces

the tolerable delay (h) in the input.

The equation of motion of a single mode with inherent (natural)

damping and velocity feedback can be written as:

X+2_iX+wi2X = f = -2_i_iX(t-h) (21)

Y

where _i is the inherent damping ratio.

The corresponding characteristic equation is given by

s2+2_[mis+tai2+2_imise-Sh = O. (22)

After substituting s = j_, equation (22) can be written as:

2 2+2_i ,(wi -w _.wl sin_h) + j(2_i_i_+2_i_i_cos_h ) = 0 (23)

For equation (23) to be satisfied for all _ and h, we have

!

2_i_i+2_i_i cos_h = 0 (24)

or
!

cos wh = -_i/_ (25)
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Thus, for cos_h = < i, the inherent damping must be less than damping due

• ', the system will always be stable.to control for instability. For _i<_i

With the value of mh from equation (25) the frequency m can be

calculated as:

i i i i

] (26)

and selecting the positive value of _, h is given by:

cos-l(-E_/Ei )'

h

mile _'2 + £ I+ESE'2 (27)
i i i i

For Ei = E' it can be seen that the delay, h, is half the undamped
natural period of vibration. As the damping due to control increases,

the tolerable delay (h) decreases and is in accordance with the observa-

tion made in the case without the inherent damping. The effect of inher-

ent damping in the system is to increase the amount of delay that the

system can tolerate without become unstable as compared to the case

without damping

IV. Discrete Time Domain

As the controller is implemented on a digital computer, it may be

more natural to consider the delayed input problem in the discrete time

domain.

The equations of motion as given by equation (2) can be written in

the discrete time domain as

X(i+l) = AdX(i)+BdU(i)
(28)

where

AA A A(t-h)
fe

A d = e , B d =
o

A = discretization time.

B dt

The delayed input problem can be considered in discrete time in one o_

the two following ways:

i) Designing the controller of the form U = -FX(i) without taking

into consideration the delay and then examining the effect

of delay on the stability of the closed-loop control system.

The control gain matrix F is designed such that the matrix (Ad-BdF)

has the eigenvalues within the unit circle. Then the delay is introduced

into the control law as:
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U(i) = - FX(i-£) (29)

and

X(i+l) = AdX(i)-BdFX(i-Z) . (30)

The stability of equation (30) can be studied using the augmented system

given by

or

x(i+l)

X(i)

X(i-_+l J

I

i

r
Ad 0 0 0 -BdF_- ! X(i) ]

i o 0 o 0 I ' x(i-l)

I

0 0 I 0]o I. x(±-_)J

Z (i+l) A d

q_

z(i) (31)

rb _

Z (i+l) = AdZ(i) (25)

(ii) Designing the control by taking into account the delay in
the input. 6,11

Equation (28) can be modified as :

X(i+l) = AdX(i) + BdU(i-_ )

The control law of the form U(i) = -FZ(i) can be designed from the

augmented system:

(32)

X(i+l)

u(i)

u(i-i)

u(i-_+l)

i I

Ad 0 0 0 Bd

0 0 0 0 0

0 I 0 0 0

0 0 0 I 0

x(i)

u(i-l)

U(i-_)

z(i)

+

0

I

0

0

u(i)

(33)

or

Z(i+l) -- AdZ(i ) + BdU(i )

130
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Thus the input U(i-£) is a function of the previous inputs _,U(i-£-l),

U(i-£-2),..., and the previous states X(i-£). Though this design can

take delay into consideration, the sequence of the control signals:

U(i-£), U(i-£+l),... must be generated at an interval of one step and,

thus, the original delay problem is not completely solved.

Conclusions

The effect of delay in the input on the stability of the continuous

time controller that is designed without taking this delay into consider-

ation is presented. The closed-loop control system of a second order

plant becomes unstable for a delay of 0.16 seconds, which is only 16 per-

cent of its natural period of motion. It is also observed that even a

small amount of inherent (natural) damping in the system can increase the

amount of delay that can be tolerated without the system becoming unsta-

ble. The delay problem is formulated in the discrete time domain and an

analysis procedure is suggested.
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